The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion
نویسندگان
چکیده
Using a systematic approach to evaluate Fredholm determinants numerically, we provide convincing evidence that the Airy1-process, arising as a limit law in stochastic surface growth, is not the limit law for the evolution of the largest eigenvalue in GOE matrix diffusion.
منابع مشابه
Introductory Workshop Random Matrix Models and Their Applications Airy Kernel and Painlevé Ii
We prove that the distribution function of the largest eigenvalue in the Gaussian Unitary Ensemble (GUE) in the edge scaling limit is expressible in terms of Painlevé II. Our goal is to concentrate on this important example of the connection between random matrix theory and integrable systems, and in so doing to introduce the newcomer to the subject as a whole. We also give sketches of the resu...
متن کاملAiry Kernel and Painlevé II
We prove that the distribution function of the largest eigenvalue in the Gaussian Unitary Ensemble (GUE) in the edge scaling limit is expressible in terms of Painlevé II. Our goal is to concentrate on this important example of the connection between random matrix theory and integrable systems, and in so doing to introduce the newcomer to the subject as a whole. We also give sketches of the resu...
متن کاملTransition between Airy1 and Airy2 processes and TASEP fluctuations
We consider the totally asymmetric simple exclusion process, a model in the KPZ universality class. We focus on the fluctuations of particle positions starting with certain deterministic initial conditions. For large time t, one has regions with constant and linearly decreasing density. The fluctuations on these two regions are given by the Airy1 and Airy2 processes, whose one-point distributio...
متن کاملThe universal Airy1 and Airy2 processes in the Totally Asymmetric Simple Exclusion Process
In the totally asymmetric simple exclusion process (TASEP) two processes arise in the large time limit: the Airy1 and Airy2 processes. The Airy2 process is an universal limit process occurring also in other models: in a stochastic growth model on 1+1-dimensions, 2d last passage percolation, equilibrium crystals, and in random matrix diffusion. The Airy1 and Airy2 processes are defined and discu...
متن کاملDistribution Functions for Largest Eigenvalues and Their Applications
It is now believed that the limiting distribution function of the largest eigenvalue in the three classic random matrix models GOE, GUE and GSE describe new universal limit laws for a wide variety of processes arising in mathematical physics and interacting particle systems. These distribution functions, expressed in terms of a certain Painlevé II function, are described and their occurences su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008